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Abstract

We investigate the ultra weak variational formulation for simulating time-harmonic Maxwell problems. This study has
two main goals. First, we introduce a novel derivation of the UWVF method which shows that the UWVF is an unusual
version of the standard upwind discontinuous Galerkin (DG) method with a special choice of basis functions. Second, we
discuss the practical implementation of an electromagnetic UWVF solver. In particular, we propose a method to avoid the
conditioning problems that are known to hamper the use of the UWVF for problems in general geometries and inhomo-
geneous media. In addition, we show how to implement the PML in the UWVF to accurately approximate physically
unbounded problems and discuss the parallelization of the UWVF. Three-dimensional numerical simulations are used
to examine the feasibility of the UWVF for simulating wave propagation in inhomogeneous media and scattering from
complex structures.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is concerned with the development and validation the ultra weak variational formulation
(UWVF) for Maxwell’s equations proposed by Cessenat [4] and described in [5]. This method is based on a
volume mesh and uses plane wave solutions of the Maxwell system on each element in the grid in the discret-
ization procedure. Hence, the UWVF method resembles Trefftz type finite element techniques in which plane
waves are also used to dicretize the Maxwell’s equations [20,23] although the variational formulation is
different.

We first give an alternative derivation of the UWVF that shows that the UWVF is a discontinuous Galer-
kin (DG) method but differs from standard methods in having a special choice of basis functions (coming from
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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the plane waves mentioned above) and a special choice of degrees of freedom. Due to the connection with DG
methods, it is no surprise that the UWVF shares several features of the finite element method. Convergence
can be obtained by either refining the grid or increasing the number of basis functions per element (within cer-
tain limits which we shall describe). Due to the underlying DG scheme, having different numbers of basis func-
tions per element is easy to implement and, it turns out, essential for obtaining a more robust UWVF.

In our implementation of the UWVF a tetrahedral mesh is used, and thus the UWVF can easily approx-
imate complicated geometric structures in the same way as finite element methods. In addition the UWVF can
handle variable coefficients in the Maxwell system (for example a variable conductivity), but unlike the finite
element method, the coefficients must be piecewise constant.

In the original UWVF, the number of basis functions per element is fixed, and this can cause severe ill-con-
ditioning of the resulting matrix problem if too many directions are used on a small element. We have inves-
tigated this for UWVF for the Helmholtz equation [16] where we proposed to use a variable number of
directions per element and to control the global condition number of the UWVF matrix by controlling the
local condition number of certain submatrices via a choice of the number of directions element by element
through the grid (thus avoiding an expensive global condition number calculation). We shall show here that
this scheme can also be used for the Maxwell UWVF. We also propose a direct method for estimating the
number of plane waves on an element and show that this can improve performance.

The UWVF uses a different variational formulation to either traditional DG or finite element methods for
Maxwell’s equations. The resulting discrete matrix equation then has different properties (distribution of
eigenvalues [4]) to the standard finite element matrices. We find that a simple biconjugate gradient scheme
can be used to solve this system, at least for the matrices encountered in this study (and provided the condi-
tioning problem mentioned previously is handled). Since the biconjugate gradient algorithm only requires
matrix multiplication we can easily parallelize the UWVF on a message passing system parallel computer.
We shall give details of this and report on the associated performance later in the paper.

The basic UWVF of [4] approximates unbounded domains via a low order absorbing boundary condition
and this is a weakness. One goal of this paper is to show how to implement the perfectly matched layer (PML)
of Bérenger [1] in the UWVF to give a better absorbing boundary.

In the numerical examples section we shall compare the UWVF and an edge element code from the COM-
SOL multi-physics commercial finite element package [10]. We find that we can obtain comparable accuracy
for the model problem with sharply less memory use and with less computer time. This suggests that the
UWVF may be advantageous in some situations. We have found this to be particularly evident as the wave
number increases when COMSOL can run out of memory.

Of course, besides FEM, there are many other commonly encountered alternatives to the UWVF. Integral
equation techniques handle the unbounded domain without trouble, and can also handle complex geometry
(see for example [8]). Their main disadvantages are that penetrable media need to be implemented either by
systems of integral equations on each interface between piecewise constant regions or via volume integral
equations (alternatively boundary element and finite element methods can be coupled – see for example
[13]). In addition to solve the resulting linear system (which also requires to evaluate singular integrals in a
careful way) it is necessary to use a fast operator evaluation strategy like the fast multipole method
(FMM) [12]. Elsewhere, one of us (Monk) and E. Darrigrand have started to test coupling boundary integral
equations using the FMM together with the UWVF to provide an alternative mesh truncation procedure [11].

We also mention the popular finite integration method (FIT) [24,25]. This is essentially a volume based
finite difference scheme so the representation of curved or complicated boundaries requires special care.
The implementation of impedance boundary conditions is then even more complex. Of course the simple
structured mesh of a finite difference method implies a more efficient code and potentially special solution
methods when compared to similar finite element methods.

Returning to a discussion of the UWVF, we note that the theoretical convergence properties of the UWVF
are not as well understood as for the other methods mentioned above (a dispersion analysis is not yet avail-
able). In addition, the solution is not computed everywhere but only on the faces of the tetrahedral mesh
(termed the ‘‘skeleton’’ of the mesh) and requires a post-processing step to obtain the solution away from
the skeleton. However the far field pattern can easily be calculated directly from the UWVF solution [4]. A
goal of this paper is to show practical ways to avoid or control the problems we have mentioned above
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(we shall not address theoretical aspects here beyond presenting a novel and unifying derivation of the
method). In summary, we shall address several practical issues related to using the UWVF as follows:

� We shall discuss the choice of the number of basis functions per element to balance the competing needs of
accuracy and conditioning.
� We shall show how to implement a PML in the UWVF and demonstrate that it provides enhanced perfor-

mance compared to the basic low order boundary condition in the standard UWVF.
� We shall show how to post-process the computational results to approximate the solution away from the

mesh skeleton.
� We shall show that the method can solve scattering problems such as scattering in a layered medium and

scattering from a sphere where exact solutions are available, as well as scattering from the NASA almond
where we compare to published results and results from a finite element method. We shall also show one
way to implement a point source in the UWVF.

As part of these investigations we shall also exhibit the performance of the linear system solver (BiCGStab),
and investigate the frequency dependence of the solution. We shall try to show that the UWVF is a viable and
useful Maxwell solver.

We finish this introduction by describing in detail the Maxwell system and boundary conditions approxi-
mated by the basic UWVF of Cessenat and Després [4,5]. Suppose X is a bounded polyhedral domain in R3.
We want to approximate the electric field E and magnetic field H that satisfy the following time-harmonic
Maxwell system
� ix�E �r�H ¼ 0 in X; ð1Þ
� ixlH þr� E ¼ 0 in X: ð2Þ
Here x is the temporal frequency of the field, and � and l are, respectively, the permittivity (complex val-
ued in general) and permeability (real valued) of the material in X. In particular, for �, the real part Rð�Þ
is bounded and strictly positive. The imaginary part Ið�Þ is bounded and non-negative, and l is real,
bounded and strictly positive. The field is supposed to satisfy the following generalized impedance bound-
ary condition
�E � nþ rðH � nÞ � n ¼ QðE � nþ rðH � nÞ � nÞ þ g on C ¼ oX; ð3Þ
where Q is a real scalar function of position on the boundary with jQj 6 1, n is the unit outward normal on C
and g is a tangential vector field giving the boundary condition. The positive parameter r defined on the
boundary C (beware this is not the conductivity!) helps specify the boundary condition. Often we choose
r ¼ ffiffiffi

l
p

=
ffiffiffiffiffi
j�j

p
, but more generally we allow r to be any bounded strictly positive real function on C.

Note that the boundary condition (3) is rather general and for special choices of Q can be used to imple-
ment several standard boundary conditions. Choosing Q = 1 we get E · n = �2g which is the standard perfect
electrically conducting boundary condition. If Q = 0 we obtain the impedance boundary data.
�E · n + r(H · n) · n = g and with an appropriate choice of r ¼ ffiffiffiffiffi

l0

p
=
ffiffiffiffi
�0
p

where �0 and l0 are the electro-
magnetic parameters of free space we have the lowest order absorbing boundary condition that can be used
to truncate the computational domain in a scattering calculation. Finally, Q = �1 gives a magnetic wall con-
dition useful for approximating surfaces with very high permeability (or to implement a symmetry boundary
condition).

2. Derivation of the UWVF

In this section, we shall derive the UWVF for the basic Maxwell system (1)–(3). Our derivation, which dif-
fers from that of Cessenat and Després [4,5], highlights the connection between the UWVF and the classical
flux splitting discontinuous Galerkin method for symmetric hyperbolic systems (see for example [18]). In fact
we shall show that the UWVF can be viewed as a discontinuous Galerkin method with a special choice of test
and trial space.



734 T. Huttunen et al. / Journal of Computational Physics 223 (2007) 731–758
2.1. The continuous problem

Let sh = {K} denote a regular finite element mesh of elements K of maximum diameter h covering X. In
principle, this mesh can be quite general allowing for mixing various elements (cubes, tetrahedra, prisms,
etc.), but in our implementation we use a tetrahedral finite element mesh since it is easy to generate and fits
general boundaries reasonably well. Hence we shall assume that each element K is a tetrahedron and hence has
triangular faces (so simplifying some integrals that need to be performed during the calculation).

We now proceed along standard lines to derive a discontinuous Galerkin method for the Maxwell system
recalling first the integration by parts identity that for any a and b sufficiently smooth on K
Z

K
r� a � �b dV ¼

Z
K

a � r � �b dV þ
Z

oK
nK � a � �b dA;
where the over-line represents complex conjugate and nK is the unit outward normal to the boundary oK of K.
Now let nK and wK denote smooth test vector functions on an element in the mesh. Multiplying (1) and (2) by
the complex conjugate of nK and wK and integrating over K using the above integration by parts identity to
move the curl off the trial functions we obtain
Z

K
ð�ix�E � nK �H � r � nKÞ dV ¼

Z
oK

nK �H � nK dA;Z
K
�ixlH � wK þ E � r � wK
� �

dV ¼ �
Z

oK
nK � E � wK dA:
Adding the two equations and reordering the left-hand side we obtain
Z
K
ðE � ðix��nK �r� wKÞ þH � ðixlwK �r� nKÞÞ dV ¼

Z
oK
ðnK �H � nK � nK � E � wKÞ dA;
where we have used the fact that l is assumed to be real valued. Usually, in the derivation of the discontinuous
Galerkin method, we would now specify how to compute the ‘‘fluxes’’ or surface currents nK · E and nK · H
from approximate discontinuous fields, but in this case we now make an important assumption that is the
essential part of the UWVF. We assume that nK and wK satisfy the following adjoint Maxwell system on K:
ix��nK þr� wK ¼ 0 in K; ð4Þ
ixlwK �r� nK ¼ 0 in K: ð5Þ
With this assumption the above identity for (E,H) on K reduces to
Z
oK
ðnK �H � nK � nK � E � wKÞ dA ¼ 0: ð6Þ
We now apply the usual discontinuous Galerkin upwind splitting method to this identity. Let
uK ¼
EjK
H jK

� �
and /K ¼ nK

wK

 !
then (6) becomes
Z
oK

DKuK � /K dA ¼ 0; ð7Þ
where the matrix DK is given by
and ZK ¼
0 nK

3 �nK
2

�nK
3 0 nK

1

nK
2 �nK

1 0

0
B@

1
CA:
Note that ZKa = �nK · a for any vector a and ZK = �(ZK)T.
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Flux splitting now amounts to a suitable factoring of DK into positive and negative semi-definite parts cor-
responding to left and right going waves. To obtain the general UWVF we use a slightly more general factor-
ization than usual. Let r > 0 be defined on the faces of the mesh. On the boundary faces this is the function r
appearing in the boundary condition (3). For the remaining faces in the mesh our choice is given in Section 2.2
Eq. (12). To define the splitting of DK let
LK;þ ¼ 1ffiffiffiffiffiffi
2r
p ð�ZK ; rðZKÞ2Þ and LK;� ¼ 1ffiffiffiffiffiffi

2r
p ð�ZK ;�rðZKÞ2Þ
and define DK,± = ±(LK,±)T(LK,±). Note that LK,± are 3 · 6 matrices so DK,± are 6 · 6 as required. Since
(ZK)T(ZK)2a = (nK · (�nK · (�nK · a))) = �nK · a for any vector a, we have the identity (ZK)T(ZK)2 = (ZK).
A simple calculation then shows that DK = DK,+ + DK,� with DK,+ positive semidefinite and DK,� negative
semidefinite. An important property of the splitting that we shall use later is that if elements K and K 0 share
a common face then on that face we have ðusingthefactthat nK ¼ �nK 0 Þ
LK;� ¼ 1ffiffiffiffiffiffi
2r
p ð�ZK ;�rðZKÞ2Þ ¼ � 1ffiffiffiffiffiffi

2r
p ð�ZK 0 ; rðZK 0 Þ2Þ ¼ �LK 0 ;þ:
Using the splitting of DK and the factorization of each term in the splitting we may rewrite (7) as
Z
oK
ððLK;þuKÞ � ðLK;þ/KÞ � ðLK;�uKÞ � ðLK;�/KÞÞ dA ¼ 0: ð8Þ
The discontinuous Galerkin flux splitting approach is then to couple the solution on adjacent elements
using the second term in the above equation. Thus if K 0 is an element sharing a face with K we have (using
the continuity properties of the solutions of Maxwell’s equations across an interface in the absence of surface
charges)
LK;�uK ¼ �LK 0 ;þuK 0 ð9Þ

on the common face. For faces on the boundary C we use the boundary condition (3) written in the convenient
form
LK;�uK ¼ �QLK;þuK � ĝ on oK \ C;
where ĝ ¼ ð1=
ffiffiffiffiffiffi
2r
p
Þg. Eq. (8) then becomes
Z

oK
ðLK;þuKÞ � ðLK;þ/KÞ dV þ

X
K 0;oK 0\oK¼f 6¼;

Z
f
ðLK 0;þuK 0 Þ � ðLK;�/KÞ dA

þ
X

oK\C¼f 6¼;

Z
f
ðQLK;þuK þ ĝÞ � ðLK;�/KÞ dA ¼ 0: ð10Þ
This is essentially the UWVF of Cessenat and Després before discretization but to make the connection
more obvious we define
XK ¼ LK;þuK joK ;Y
K ¼ LK;þ/K joK and F KðYKÞ ¼ �LK;�/K joK :
Then (10) becomes the problem of finding XK on the faces oK of each element K such that
Z
oK

XK �YK dA�
X

K 0;oK 0\oK¼f 6¼;

Z
f
XK 0 � F KðYKÞ dA�

X
oK\C¼f 6¼;

Z
f

QXK � F KðYKÞ dA

¼
Z

oK
ĝ � F KðYKÞ dA ð11Þ
for all appropriate YK . This is the UWVF for Maxwell’s equations before discretization (exactly that of Cess-
enat and Després using their choice of r, see (12)). A natural question is what is the correct space for the trial
and test functions. It turns out that if L2

t ðoKÞ denotes the space of square integrable fields on oK that are tan-
gent to oK then we can seek XK 2 L2

t ðoKÞ on each K such that (11) holds for all YK 2 L2
t ðoKÞ and all elements

K. The only difficulty is to see that in this case, given any YK 2 L2
t ðoKÞ, we can find a solution /K (in
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H(curl;K)2) of (4), (5) that satisfies the generalized impedance boundary condition LK;þ/K ¼ YK on oK and
furthermore that F KðYKÞ 2 L2

t ðoKÞ. This can be proved as usual by studying the impedance problem on a
bounded domain (see [4,19]). In particular, it can be shown [4] that (11) has exactly one solution for any
ĝ 2 L2

t ðCÞ and that if uK is computed element-wise using the Maxwell system (1), (2) together with the bound-
ary condition LK;þuK ¼ XK , then the resulting piecewise defined function is exactly the solution u that satisfies
(1)–(3).

We remark that the above derivation of the UWVF extends in a simple way to the equations of elasticity
and to the Helmholtz equation written as a first order system (indeed to a general class of symmetric hyper-
bolic equations).

2.2. The discrete UWVF

It remains only to discretize the UWVF and here we follow exactly [4]. Hence we only give enough details to
make this paper self contained and refer the reader to the original source for a detailed discussion of the dis-
crete problem. For any element K let �K = �jK (i.e. the value of � on K which we have assumed constant) and
lK = ljK.

In order to obtain exactly the UWVF of Cessenat and Després we choose the auxiliary function r on a face
f in the mesh as follows
rjf ¼
the function appearing in ð3Þ if f is a boundary face;ffiffiffiffiffiffiffiffiffiffiffiffi

lf=�f

q
otherwise;

(
ð12Þ
where if f is a face common to elements K and K 0, we choose
�f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j�K�K 0 j

q
and lf ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
lKlK 0

p

and we recall that l is assumed to be real and positive.

The key to Cessenat and Després’ discrete UWVF is to choose the basis functions for XK and YK in a way
that allows the action of the operator FK to be computed easily. Various choices are possible, but for them all
it is necessary to assume that � and l are piecewise constant on the mesh. We shall assume this from now on in
the paper. Under this restriction we use plane wave solutions to approximate /K. In practice, following [4], a
suitable family of plane waves are generated on K by choosing pK directions dK

‘ , jdK
‘ j ¼ 1, 1 6 ‘ 6 pK (we use

the optimal spherical codes from the website [22]), and then defining a unit real polarization vector wK
0;‘ orthog-

onal to d‘. From this we compute the complex polarizations (sometimes called the ‘‘right and left
polarizations’’)
FK
‘ ¼ wK

0;‘ þ iwK
0;‘ � dK

‘ and GK
‘ ¼ wK

0;‘ � iwK
0;‘ � dK

‘ ; 1 6 ‘ 6 pK :
It is then easy to verify that the functions ðnF ;K
‘ ;wF ;K

‘ Þ given by
n
F ;K
‘ ¼

ffiffiffiffiffiffi
lK

p
FK
‘ expðikdK

‘ � xÞ and w
F ;K
‘ ¼ i

ffiffiffiffiffi
�K

p
FK
‘ expðikdK

‘ � xÞ;ffiffiffiffiffiffiffiffiffiffiq

where k ¼ x lK�K satisfy the adjoint Maxwell system 4, 5 on K. Similarly, the pair ðnG;K

‘ ;wG;K
‘ Þ given by
n
G;K
‘ ¼

ffiffiffiffiffiffi
lK

p
GK
‘ expðikdK

‘ � xÞ and w
G;K
‘ ¼ �i

ffiffiffiffiffi
�K

p
GK
‘ expðikdK

‘ � xÞ

are an independent set of solutions of the adjoint Maxwell system. These functions in turn generate plane
waves
/
F ;K
‘ ¼ n

F ;K
‘

w
F ;K
‘

 !
and /

G;K
‘ ¼ n

G;K
‘

w
G;K
‘

 !
for 1 6 ‘ 6 pK. The reason for this somewhat complex choice of plane wave is that n
G;K
‘ � nF ;K

‘0 ¼ 0 for any
1 6 ‘, ‘ 0 6 pK which provides some extra sparseness in certain matrices to be defined shortly. We can now de-
fine the approximation to XK denoted XK

h and given by
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XK
h ¼

XpK

‘¼1

xK
‘ LK;þ/

F ;K
‘ þ xK

pKþ‘L
K;þ/

G;K
‘ :
To compute the unknown expansion coefficients fxK
‘ g

pK
‘¼1 for each element K in the mesh we follow the usual

Galerkin approach of substituting XK
h in place of XK in (11) and choosing the test functions YK to be succes-

sively the basis function YK ¼ LK;þ/
F ;K
‘ , 1 6 ‘ 6 pK and YK ¼ LK;þ/

G;K
‘ , 1 6 ‘ 6 pK. We note that FK is easy to

compute for these basis functions since
F KðLK;þ/F ;K
‘ Þ ¼ �LK;�/

F ;K
‘

and similarly for the ‘‘G’’ basis functions. By enumerating the tetrahedra we can form a vector of unknowns~x
of length M ¼

P
K2sh

2pK containing xK
‘ , 1 6 ‘ 6 2pK in the same order as the elements are numbered. This vec-

tor satisfies that matrix equation
ðD� CÞ~x ¼ ~f ; ð13Þ

where D is the block diagonal Hermitian M · M matrix resulting from the first term on the left-hand side of
(11), C is the sparse M · M matrix resulting from the remaining two terms on the left-hand side and ~f is the
load vector given by the right-hand side after choosing YK to be each of the discrete basis functions.

In order to compute these matrices, integrals need to be performed over the faces of the tetrahedra in the
mesh. For example, in order to compute the matrix D we must evaluate integrals of the form
Z

oK
ðLK;þ/

F ;K
‘ Þ � ðLK;þ/

F ;K
‘0 Þ dA
for 1 6 ‘, ‘ 0 6 pK and similar integrals involving the ‘‘G’’ basis functions (as well as integrals involving both
‘‘F’’ and ‘‘G’’ basis functions for other terms in (11)). Using the definition of the operator LK,+ and the basis
function /

F ;K
‘ we see that
LK;þ/
F ;K
‘ ¼ 1ffiffiffiffiffiffi

2r
p �

ffiffiffiffiffiffi
lK

p
ZKFK

‘ þ ir
ffiffiffiffiffi
�K

p
ðZKÞ2FK

‘

� �
expðikdK

‘ � xÞ
with a similar expression for LK;þ/
F ;K
‘0 . On each planar face f of K the matrix ZK is constant, and we also as-

sume that r is also constant on f thus
Z
oK
ðLK;þ/

F ;K
‘ Þ � ðLK;þ/

F ;K
‘ Þ dA ¼

X
f�oK

1

2rjf
ZK

‘ jf �ZK
‘0 jf
Z

f
expðikðdK

‘ � dK
‘0 Þ � xÞ dA;
where ZK
‘ ¼ �

ffiffiffiffiffiffi
lK

p
ZKFK

‘ þ ir
ffiffiffiffiffi
�K

p
ðZKÞ2FK

‘ and similarly ZK
‘0 . The vector part of this expression is easy to

compute and relatively cheap since the dot product must be done once per face. The main difficulty in com-
puting this term is the complex exponential integral. Fortunately, Cessenat [4] shows that the integral over the
face can be computed in closed form as a difference of sinc functions. Although some care needs to be taken to
avoid cancellation errors this integral is then easy to implement.

The remaining integrals in (11) can be computed in the same way. The result is that we can compute a block
diagonal inner product matrix D corresponding to the first term on the left-hand side of (11). This matrix is
Hermitian and positive definite (as long as the wave directions are distinct), but may become severely ill-con-
ditioned if too many directions are used. We shall return to this point when we discuss the numerical imple-
mentation of the method in Section 3. We also construct a matrix C corresponding to the remaining terms on
the left-hand side of (11). This is a more general matrix that couples the expansion coefficients on a tetrahe-
dron K to the expansion coefficients on tetrahedra K 0 that share a face with K.

The right-hand side in the matrix equation (13) can also be computed in the same way provided the source
vector ~g involves only complex exponentials (such as is the case when solving scattering problems when a
plane incident wave strikes a given scatterer and it is desired to compute the scattered field). Otherwise quad-
rature is needed to compute the right-hand side. This is rather expensive due to the oscillatory nature of the
basis functions and our current implementation does not allow general boundary data for this reason.

In other applications of the UWVF in two dimensions we have found that when the boundary of the
domain is smooth, the accuracy of the UWVF can be improved by using curved edges to the elements adjacent
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to the boundary. This requires using quadrature to compute the integrals on such curved edges. So far we have
not implemented this scheme in 3D but a future improvement to our UWVF code would be to improve the
accuracy of the boundary representation in this way (at the cost of an increase in computer time to compute
the matrices D and C). Currently, we use a refined grid near to curved boundaries and allow the elements to
grow rapidly away from the boundary. We have also not tested the UWVF with non-conforming meshes.

3. Implementation

In the previous section we provided a novel derivation of the UWVF and summarized how, after choosing
the number of plane wave directions on each element, we can compute a matrix system (13) that must be
solved in order to obtain the coefficients of the surface unknown XK

h . In this section, we discuss several prac-
tical choices needed to improve the basic UWVF.

3.1. Choice of the plane wave directions

The choice of the number and directions of the plane waves on each element has a critical influence on the
accuracy of the discrete UWVF. Choosing too many directions on a given element can result in a very poorly
conditioned matrix D (introduced in the previous section). Since our inversion scheme requires to compute
D�1 this can cause the iterative method to fail to converge. Thus the choice of the number of directions on
a given element requires a balance between accuracy and conditioning.

Cessenat and Després suggest the use of a fixed number of directions on all the elements in the mesh. In this
case we recall the basic convergence result due to Cessenat [4].

Theorem 3.1. Suppose � = l = 1 and that p directions are used on each element in a quasi-uniform and regular

mesh. Then there is a set of directions fdngp
n¼1, where p = (N + 1)(N + 3) such that if jQj < 1 on oX then
kX�XhkL2ðoXÞ 6 ChNþ1=2
as the mesh size h decreases, provided the solution is sufficiently smooth.

This theorem tells us that, at least for smooth solutions to the Maxwell system, we can increase the order of
convergence of the method by increasing the number of directions p per element (similar to an p-finite element
method where the degree of the polynomial basis governs the order of convergence for smooth solutions). In
addition it was shown in [9] that for any fixed mesh, kX�XhkV ! 0 as p!1 for any electromagnetic field in
H(curl;X) (again assuming � = l = 1) provided the directions are chosen to be suitable quadrature points on
the unit sphere. These results suggest that choosing p large may be advantageous for accuracy.

Using the UWVF for acoustic problems, we have found that a uniform choice of p across all elements may
lead to poor accuracy on large elements, or poor conditioning on small elements [16]. In [16] we advocated the
practical choice of setting a maximum allowable condition number and choosing the number of directions pK

for each element K to be the largest number such that the block of D associated with K has condition number
at or below the cutoff. Thus we emphasized the practical need for convergence of the iterative scheme at the
expense of indirect control over accuracy. This choice works well for a serial program, but when we come to
implement a parallel code we would like to predict approximately the number of directions per element
quickly to help load balancing. This choice can later be refined element by element after the parallel job
has been allocated to the processors as long as the number of directions per element does not change greatly.

We have adopted a heuristic for choosing the number of directions per element based on the analysis of the
error in using plane waves to approximate an independent plane wave not in the basis. This analysis does not
include polarization effects and is therefore incomplete, but it does suggest why plane waves are essentially
equivalent to Bessel functions for building the basis. The analysis also does not apply to evanescent waves.

Suppose we wish to approximate a plane wave exp(ikx Æ d), jdj = 1, using a sum of plane waves in the direc-
tions d1; . . . ; dpK

on an element K. We choose the origin of the coordinate system to be at the center of the
inscribed sphere (having radius qK) and denote by hK the maximum distance of points on oK from this
inscribed center. In fact hK is roughly the radius of the element if the elements are regular. The assumption
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behind the analysis we shall now give is that kqK is large so that the inscribed sphere is many wavelengths
across (and of course khK is still larger). For any point x on the surface of the element we have qK 6 jxj 6 hK.
Thus we can seek to approximate exp(ikd Æ x) to error � in the maximum norm for large kjxjP kqK. Carayol
and Collino [3] show that if
Table
The m
directi

Order

Dimen
Factor
LK � khK þ
1

2

2

3

� �3=2

W 2=3 2khK

3�2

� �
ðkhKÞ1=3 � 1

2
þ terms vanishing in khK ; ð14Þ
where W is the Lambert W function defined on [1/e,1) by W(t)exp(W(t)) = t, then for large khK we can trun-
cate the Jacobi–Anger expansion to error � using (LK + 1)2 terms in the sum. Using the fact that LK is an
increasing function of khK and kjxj is also large on the surface of the element we have
expðikd � xÞ � 4p
XLK

‘¼0

X‘
m¼�‘

i‘j‘ðkjxjÞY m
‘ ðx̂ÞY m

‘ ðdÞ
to error � where x̂ ¼ x=jxj, j‘ is the ‘th spherical Bessel function and Y m
‘ is the spherical harmonic of index ‘

and momentum m. The same holds for each of the directions dj and thus we can write
expðikx � dÞ �
XpK

n¼1

cn expðikx � dnÞ � 4p
XLK

‘¼0

X‘
m¼�‘

i‘j‘ðkjxjÞY m
‘ ðx̂Þ Y m

‘ ðdÞ �
XpK

n¼1

cnY m
‘ ðdnÞ

 !
to accuracy ð1þ
PpK

n¼1jcnjÞ� when kjxj is large and where the cn, n = 1, . . . ,pK are suitable expansion coeffi-
cients. The right-hand side will vanish if we can choose the coefficients cn such that
Y m
‘ ðdÞ ¼

XpK

n¼1

cnY m
‘ ðdnÞ
for 0 6 ‘ 6 LK and �‘ 6 m 6 ‘. For a given choice of d and approximating directions this is a system of
(LK + 1)2 equations in pK unknowns (the cn’s). We thus can choose pK = (LK + 1)2 and then choose the direc-
tions fdngpK

n¼1 so that they form a fundamental system for the given set of spherical harmonics (this is always
possible since the spherical harmonics are linearly independent) [26]. This guarantees the invertibility of the
matrix that would arise if we wished to compute the coefficients cn. Hence the above equation is solvable. Var-
ious tables of fundamental sets of directions for LK = 1, . . . , 29 are given in [21] (optimal with respect to dif-
ferent criteria). Note that the need for a fundamental set of directions is also suggested by the statement of the
error estimate in Theorem 3.1 where only certain choices of directions give a good error estimate.

There remains the possibility that ð1þ
PpK

n¼1jcnjÞ might grow very rapidly with pK and hence make the
above estimates meaningless. We use the directions fdngpK

n¼1 (from pK = 4 to pK = 121 or LK = 1, . . . , 10) for
the optimal spherical codes from the website [22]. For these directions we have computed the expansion coef-
ficients cn, n = 1, . . . ,pK for pK = (LK + 1)2 and LK = 1, . . . , 10 tested at 10,000 randomly chosen points on the
unit sphere. The results are shown in Table 1 and show that, apart from LK = 4, the factor generally does not
grow rapidly for the values of LK used here. We have no explanation for the large value for LK = 4.

In conclusion, if we compute LK via (14) and set pK = (LK + 1)2 we can approximate the trace of the plane
wave on the boundary of the element K to accuracy approximately � provided the element is non-degenerate
and kjxj is large on the faces of the element (i.e. for example if the element contains a sphere that many wave-
lengths across) and the directions are chosen to be a fundamental set. In practice we use estimate (14) to moti-
vate a heuristic for calculating LK even for elements that are small compared to the wavelength of the
1
aximum of the factor ð1þ

PpK
n¼1jcnjÞ appearing in the error analysis as a function of LK computed from 10,000 randomly chosen

on vectors d on the unit sphere

LK 1 2 3 4 5 6 7 8 9 10

sion pK 4 9 16 25 36 49 64 81 100 121
ð1þ

PpK
n¼1jcnjÞ 3 4.2 4.6 2 · 1010 20 11 16 25 58 39
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radiation, but this needs to be improved. Note that, even for large elements, this procedure only concerns the
local approximation of plane waves and does not guarantee good dispersion error or good approximation
error for more general fields.

If khK is large, due to the slower than logarithmic growth of W, we have that
LK 6 CkhK þ 1=2
for any fixed C > 1 and for khK large enough. This avoids the task of computing W. Motivated by this, we
allow the user to choose coefficients Aj, j = 0,1,2, then compute
pK ¼ roundðA2ðkhKÞ2 þ A1khK þ A0Þ; ð15Þ

where ‘‘round’’ corresponds to the nearest integer value of the given function. This gives the number of direc-
tions on K and the actual directions are drawn from the table of spherical codes as mentioned above. No
restriction is placed on the choice of pK other than the practical restriction that 3 6 pK 6 130 so adjacent ele-
ments may have widely different number of basis elements. We shall present more details of this approach and
some numerical tests in Section 4.

3.2. Adding a PML layer

The first order absorbing boundary condition obtained by setting Q = 0 and r ¼ ffiffiffiffiffi
l0

p
=
ffiffiffiffi
�0
p

in (3) requires
the absorbing boundary to be far from the scatterer to obtain reasonable accuracy. It is thus desirable to be
able to use more efficient mesh termination methods. In [15] we showed how to implement the perfectly
matched layer (PML) in the UWVF for acoustics. A similar approach can be taken for the Maxwell system
and we now outline that approach here. The PML is applied to the Maxwell system in free space where
� = �0 and l = l0. For simplicity we shall assume that the PML is applied when jxij = x0,i > 0 so the stan-
dard Maxwell system governs the field in the box jxij 6 x0,i, i = 1,2,3 which contains the scatterer. The
PML will occupy the region outside the box and within the box �x0,i � Li < xi < x0,i + Li, i = 1,2,3. Thus
the PML has thickness Li in the direction xi along the ith coordinate axis. Our experience with the acoustic
UWVF is that, unlike standard finite element methods, the UWVF works well with a constant absorption
in the layer. As we shall see this allows the analytic calculation of certain integrals in the theory, and the
constant PML does not cause unacceptable reflections at the PML boundary. A key assumption is that the
planes xi = ±x0,i, i = 1,2,3 at the interface between the PML and the ordinary Maxwell region of the com-
putational domain are the union of faces of elements (i.e. the planes coincide with boundaries between ele-
ments – any element is either entirely in the PML or entirely in the Maxwell part of the computational
domain).

We noted in the introduction that in general the UWVF cannot handle graded materials (i.e. having param-
eters that vary continuously in space). However, because the PML is based on a change of variables, we shall
see that spatially varying PML parameters can be used in the UWVF.

In order to define the PML we use a complex stretching of the spatial variables [6,19] so that we define
~xi ¼
xþ ir0

k
jxi�x0;ij

Li
for jxij > x0;i;

xi for jxij < x0;i

(
ð16Þ
for i = 1,2,3 where k ¼ x
ffiffiffiffiffiffiffiffiffi
�0l0

p
, Li is the previously defined thickness of the absorbing layer in the ith direc-

tion and ri,0 > 0 is the constant PML absorption parameter in the ith direction. Replacing xi, formally, by ~xi in
(1), (2) defines the non-physical electromagnetic field denoted ~E and ~H which satisfy the Maxwell system with
respect to the ‘‘tilde’’ variables:
� ix�0
~E � ~r� ~H ¼ 0;

� ixl0
~H þ ~r� ~E ¼ 0;
in the PML where ~r� denotes the curl in ‘‘tilde’’ variables. We now use the definition of the ‘‘tilde’’ variables
to change variables back to real coordinates xi, i = 1,2,3. Define di = 1 + iri,0/(kLi) and let the matrices A and
B be given by
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A ¼
1=ðd2d3Þ 0 0

0 1=ðd1d3Þ 0

0 0 1=ðd1d2Þ

0
B@

1
CA and B ¼

d1 0 0

0 d2 0

0 0 d3

0
B@

1
CA
then after the change of variables the above equations become
�ix�0
~E � Ar� B ~H ¼0;

�ixl0
~H þ Ar� B~E ¼0:
Defining the computed fields in the PML denoted, in an abuse of notation, by E ¼ B~E and H ¼ B ~H we obtain
the following system for the non-physical electromagnetic field in the PML:
� ix�0A�1B�1E �r�H ¼ 0; ð17Þ
� ixl0A�1B�1H þr� E ¼ 0: ð18Þ
Thus defining the non-physical anisotropic electromagnetic parameters in the PML by �B = �0A�1B�1 and
lB = l0A�1B�1 we see that in the PML the fields satisfy the Maxwell system (1), (2) with � and l replaced by �B
and lB, respectively (the subscript B refers to J.P. Bérenger who first proposed the PML in 1996 [1]). Note that
now lB is complex valued, and �B and lB are symmetric but not Hermitian matrices.

Within the PML region, the derivation of the UWVF in Section 2 still applies. The only change is to allow l
to be complex so that the adjoint problem becomes
� ix�BnK �r� wK ¼ 0; ð19Þ
� ixlBwK þr� nK ¼ 0; ð20Þ
in each element K in the PML. The same boundary condition can be used on the outer surface of the PML,
and since the matrix B is continuous within the PML, the same matching condition and flux computation can
be used across inter-element boundaries.

At the boundary between the PML and Maxwell (vacuum) regions the same matching of fields between
adjacent elements can also be performed. This is because the boundaries between the PML and Maxwell
regions are coordinate planes that are the union of faces in the mesh. For example suppose we have one tet-
rahedron K in the vacuum region, and another K 0 in the PML meeting at a common face on the surface
x1 = x1,0. Across the interface (i.e. on f) the change of variables approach implies that EjK � nK ¼ ~EK 0 � nK .
But d2 = d3 = 1 in K 0 and only d1 6¼ 1. Since only tangential components of the field are continuous across
f we have also EjK � nK ¼ ðB~EK 0 Þ � nK ¼ EK 0 � nK . Similarly H · nK is also continuous across f. Thus the flux
matching Eq. (9) holds between K and K 0 since both sides only involve tangential components of the relevant
fields. We can conclude that the UWVF equation (11) holds throughout the Maxwell region and the PML
regions of the computational domain, provided the modified adjoint equations (19) and (20) are used in cal-
culating FK for elements in the PML.

The PML can be discretized, because, by construction, plane wave solutions of the adjoint system (19) and
(20) can be derived from standard plane wave solutions in the ‘‘tilde’’ coordinates via the change of variables
(16).

3.3. Point sources

In Section 4 we shall investigate fields originating from an electric dipole source at the point x0 2 X. The
dipole point source can be defined as the solution of the Maxwell system
� ix�E �r�H ¼ j in X; ð21Þ
� ixlH þr� E ¼ 0 in X; ð22Þ
where j ¼ Iadx0
and where I and a, jaj = 1 denote the amplitude and polarization of the dipole. In addition, dx0

denotes the Dirac delta function. Following the procedure of Section 2, it is easy to show that the right-hand
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side of Eq. (21) provides a term to the right-hand side of the UWVF equation (11). For the point source in the
element x0 2 K, the additional term is simply as
�2

Z
K

j � nK ¼ �2Ia � nKðx0Þ: ð23Þ
An alternative approach to modeling point sources is to use the explicitly known fundamental solution for
Maxwell’s equations as part of the basis and so take into account the singularity exactly (assuming the singu-
larity is away from the boundary of the element containing it). This method might remove the need to refine
the mesh near the singularity. We have not investigated this alternative.

3.4. Reconstruction within elements

Since the UWVF method provides an approximation for the function XK (which is a function of E and H)
on each element face oK, but not a direct solution for the electric field E and the magnetic field H, a post-pro-
cessing step is needed to resolve E and H within elements. The approximation XK

h for the function XK is con-
structed by using plane waves /

F ;K
‘ and /

G;K
‘ which in turn are solutions of the adjoint Maxwell system (4) and

(5). It is clear that in the absence of absorption, the permittivity � and the wave number k are real valued and
the adjoint system (4) and (5) is the same as the physical Maxwell equations (1) and (2). Consequently, for real
valued �, the plane wave basis functions /

F ;K
‘ and /

G;K
‘ are solutions of the local Maxwell equations in the cor-

responding element K. Therefore, it is easy to observe that for any element K in a non-absorbing medium, the
approximation uK

h for uK is
uK
h ¼

XpK

‘¼1

xK
‘ /

F ;K
‘ þ xK

Mkþ‘/
G;K
‘ : ð24Þ
Resolving the field uK for elements in an absorbing medium (i.e. � is complex valued) or within the PML re-
quires a different approach. The method used here is analogous with the UWVF post-processing technique
introduced for the Helmholtz problem in [15]. Namely, we want to approximate the fields E and H in a plane
wave basis which is a solution of the actual Maxwell system (1) and (2) (or (17) and (18) in the PML), rather
than using the adjoint plane wave basis of the discrete UWVF. Therefore, we define a new set of plane waves
basis functions as
/̂
F ;K
‘ ¼

n̂
F ;K
‘

ŵ
F ;K
‘

 !
and /̂

G;K
‘ ¼

n̂
G;K
‘

ŵ
G;K
‘

 !
;

where the pairs ðn̂F ;K
‘ ; ŵF ;K

‘ Þ and ðn̂G;K
‘ ; ŵG;K

‘ Þ are solutions of the physical Helmholtz system (1) and (2) ((17) and
(18) in the PML) so that
n̂
F ;K
‘ ¼

ffiffiffiffiffiffi
lK

p
FK
‘ expðik̂dK

‘ � xÞ; ŵ
F ;K
‘ ¼ i

ffiffiffiffiffi
�K
p

FK
‘ expðik̂dK

‘ � xÞ;
n̂

G;K
‘ ¼

ffiffiffiffiffiffi
lK

p
GK
‘ expðik̂dK

‘ � xÞ; ŵ
G;K
‘ ¼ �i

ffiffiffiffiffi
�K
p

GK
‘ expðik̂dK

‘ � xÞ;
where k̂ ¼ x
ffiffiffiffiffiffiffiffiffiffi
lK�K

p
. For the elements in the PML, the permittivity �K and permeability lK are taken as the

modified parameters �K = �B and lK = lB which also leads to a matrix valued wave number k̂.
The next step is to compute new coefficients yK

‘ , 1 6 ‘ 6 2pK for this new basis corresponding to the coef-
ficients xK

‘ of the discrete UWVF problem. In particular, in each element in an absorbing medium (a physical
interpretation of the PML is an anisotropic absorbing medium) we want to approximate the solution uK as
uK
h ¼

XpK

‘¼1

yK
‘ /̂

F ;K
‘ þ yK

Mkþ‘/̂
G;K
‘ : ð25Þ
In the context of the UWVF, the coefficients yK
‘ for the element K are naturally obtained as a solution of the

equation
~yK ¼ D̂�1
K DK~xK ; ð26Þ
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where the vectors~yK and~xK contain the coefficients yK
‘ and xK

‘ , 1 6 ‘ 6 2pK for the element K. The 2pK · 2pK

matrices D̂K and DK are assembled as the diagonal blocks of D in the discrete UWVF equation (13). However,
due to the two types of plane wave bases involved in the post-processing, the matrix D̂K is computed using
integrals of the form
Z

oK
ðLK;þ/̂

F ;K
‘ Þ � ðLK;þ/̂

F ;K
‘0 Þ dA;
i.e. using the physical (non-adjoint) plane waves only. Similar integrals are needed for the basis functions
involving ‘‘G’’ basis functions as well as both ‘‘F’’ and ’’G’’ functions. The integrals for the matrix DK include
both adjoint and non-adjoint basis functions being of the form
Z

oK
ðLK;þ/

F ;K
‘ Þ � ðLK;þ/̂

F ;K
‘0 Þ dA:
In essence, the post-processing step for a non-absorbing medium is trivial since the solution for E and H can
be extended directly within elements using the same plane basis functions and coefficients needed to approx-
imate the UWVF function X, see Eq. (24). For elements in an absorbing medium or in the PML, the extension
of the solution in the elements can be computed similarly (see Eq. (25)) but by defining a new non-adjoint
plane wave basis and by resolving coefficients for the new basis using a relatively simple UWVF-type fitting
(26).
3.5. Iterative solution and parallelization

In his thesis Cessenat [4] suggests to solve the UWVF equation (13) by writing it as
ðI � D�1CÞ~x ¼ D�1~f ð27Þ

and applying a damped Richardson scheme. Note that D�1 is easy to compute since D is block diagonal, so the
action of D�1C on any vector can be computed at the expense, essentially, of multiplying by C. We have found
that the stabilized bi-conjugate gradient scheme (BiCGStab) is faster, and we use that method in all the exam-
ples presented here. An alternative, and perhaps attractive, approach is to solve ðD� CÞ~x ¼ ~f using BiCGStab
with an approximation of D�1, as a left preconditioner. This might help avoid the adverse effects of the high
condition number of D. An interesting question is how to obtain a better left preconditioner – but we do not
consider that problem here.

The UWVF has been parallelized using the same technique used to parallelize the acoustic UWVF in [14]. A
domain decomposition strategy is used. The mesh is decomposed into collections of elements using METIS
(a graph partitioning algorithm, see [17]). Because the number of basis functions per element differs widely,
the predicted number of basis functions per element is used to weight the METIS graph nodes to improve load
balancing. Note that elements are only connected through faces which simplifies the connectivity graph and
decreases the number of elements in one sub-domain that are connected to another compared to a FEM
solution.

Once the mesh is partitioned, each partition is sent to a processor (using MPI) and the processor performs
the conditioning check and adjusts the number of unknowns per element (as described in Section 3.1). The
local matrix D is also computed. This requires no communication. Then the matrix C is computed requiring
communication to determine the directions on elements neighboring each partition (through faces). Finally, ~f
is computed locally. Then the bi-conjugate gradient scheme is parallelized in the usual way using parallel
matrix multiply.

4. Numerical results

To investigate the UWVF method for simulating problems involving the time-harmonic Maxwell problems,
we study the method for several different model cases for which the exact solution is known. In the first case we
approximate the field emitted by an electric dipole in free-space. Since the domain of the problem is physically
unbounded, an absorbing boundary condition (ABC) is need on the exterior boundary of the computational
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domain. We compare two ABCs of which the first is obtained by choosing Q = 0 in (3). This condition is
referred to as ABC in the following sections. The second method to truncate the domain is the perfectly
matched layer (PML) outlined in Section 3.2.

Second, we approximate the field emitted by the dipole in an inhomogeneous medium. In particular, when
the dipole is located over a layered material for which an exact solution is available via the Sommerfeld inte-
gral [19]. The third model problem is the scattering of a plane wave from a perfectly conducting sphere. In this
case, the principal interest is in the computation of the far-field pattern and in the efficiency of the parallelized
UWVF code. However, prior to proceeding to specific model cases we shall outline the method for selecting a
stable basis for the discrete UWVF. Finally, we provide some solutions using the NASA Almond and compare
the results to results in the literature.

In all simulations, the accuracy is reported using a discrete L2 norm so that the relative error for the electric
field E is computed as
Error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
j¼1jEj � Eex

j j
2PN

j¼1jEex
j j

2

vuut ;
where Ej and Eex
j are the UWVF approximation and an exact solution of the problem at vertices referred by

the subscript j.
4.1. The choice of basis

Since it is known from the previous UWVF studies that the method can suffer from instability if the plane
wave basis is not carefully chosen [16], we begin this study by examining a method for selecting a basis on each
element (i.e. a possibly different number of directions on each element) which leads to stable solution of the
UWVF problem. The stability of the problem is in particular importance since we use the Bi-CGstab iteration
for solving the UWVF matrix system.

As was noted in 2D UWVF simulations of the Helmholtz equation in [16], if the number of basis directions
is too large, then the matrix (I � D�1C) may become ill-conditioned. It was also observed that by controlling
the condition number of matrix blocks DK element by element it is possible to have control over the condi-
tioning of the overall UWVF matrix system [16]. More precisely, a large user specified tolerance is set and
the computation of the matrix blocks DK is begun element by element by using a relatively small number
of basis functions per element. After the assembly of DK, its condition number is computed (note that this
involves only the small local matrix DK). If the condition number is below the predetermined tolerance, then
the local basis dimension (number of directions on K) is increased and the matrix DK is recomputed. This pro-
cedure is repeated until the largest number of basis functions giving a condition number below the tolerance
found. Our experience is that this approach ensures that the iterative scheme for solving (27) converges pro-
vided the tolerance is not chosen too large. Accuracy can be improved by choosing the tolerance larger within
the overall constraint of requiring the iterative method converge.

While in 2D it is possible to make a relatively poor initial guess for the basis dimension, due to the wider
range of possible basis dimension in 3D, a better approach for 3D problems is needed. The analysis of Section
3.1 showed that when khK is large, the approximation error for pK plane waves is a relatively simple function
of kKhK. On the other hand, numerical experiments for the 3D Helmholtz problem in [14] show that by con-
straining the condition number of DK leads to almost an linear relation relationship between the scaled wave
number kKhK and the basis dimension pK. Despite the fact that the relationship between the conditioning and
the error is not yet properly understood, we focus on the controlling the conditioning since ill-conditioning
leads to divergent Bi-CG iterations.

Let kre denote the real part of the wave number k. In Fig. 1, the basis dimension pK is plotted as a function
of kreh

av
K when the maximum condition number of the matrix blocks DK is limited by the tolerances 105, 107

and 109. The element size parameter hav
K is defined as a mean distance of the element vertices from its centroid

by
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hav
K ¼

1

4

X4

j¼1

jxK
CM � xK

j j;
where xK
CM is the position of the centroid of the tetrahedron K and xK

j , j = 1, . . . , 4 are the coordinates of the
vertices.

As in the Helmholtz case [14], we see an almost linear relationship between the basis dimension and the
element size scaled wave number kreh

av
K . Motivated by this observation and our accuracy considerations in Sec-

tion 3.1, we suppose that the basis dimension can be approximated by using the quadratic polynomial (15)
where the coefficients A2, A1 and A0 are computed using a least-squares fit to data of Fig. 1 and are listed
in Table 2.

We note that since the estimate (15) uses the real part of the wave number only, the absorption is not taken
into account. However, numerical simulations show that the absorption has a strong effect on the condition
number of DK. More precisely, the condition number increases with the increasing absorption coefficient.
Therefore, for a given condition number limit less basis functions are allowed in elements occupied by an
absorbing medium. Since we want to investigate the performance of the PML (which generates an absorption),
the estimate (15) for the elements in the PML is misleading. Consequently, the basis estimate (15) is used
mainly for choosing the initial basis for the conditioning based selection. In particular, to give a fair compar-
ison between the PML and ABC, the same strategy for choosing the basis must be used. We shall show, how-
ever, in Section 4.6 that in the absence of absorption, the estimates of (15) are directly applicable.

4.2. Electric dipole in free-space

The first model problem we investigate is to compute the field due to an electric dipole obtained by using
Eq. (23) as the right-hand side of the UWVF. In this section we shall assume that l = 1 so that, in the free-
space, the exact solution of the problems is
Eex ¼ ixI/ðx; x0Þa�
I

ix�
rxðrx/ � aÞ; ð28Þ
where
/ðx; x0Þ ¼
expðix

ffiffi
�
p
jx� x0jÞ

4pjx� x0j
:

The geometry and the mesh used in the free-space dipole simulations are shown in Fig. 2. To avoid possible
spurious accuracy due to symmetry, the point source is located at the point (0.2,0.2, 0.2) of the 1.0 · 1.0 · 1.0
cube centered at the origin. The cube is surrounded by 0.1 thick PML. Due to the presence of the singularity at
the location of the point source, the mesh is refined near the point (0.2,0.2, 0.2).
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Table 2
Parameters for the basis polynomials

Max(Cond(DK)) A2 A1 A0

105 0.3175 6.9819 7.1573
107 0.2578 10.7795 10.0676
109 0.0053 15.5926 13.5771

Fig. 2. Left: The domain enclosing the point source at (0.2,0.2,0.2) (mark by a small sphere). The actual region of interest is the
1.0 · 1.0 · 1.0 cube surrounded by a 0.1 thick PML. Right: The mesh for the problem consisting of 22,620 elements and 4430 vertices. The
mesh is refined near the location of the point source so that elements size increases with distance from the source r as 5r2.
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In all simulations for this problem, the basis is chosen by limiting the condition number of the matrix
blocks DK. The initial guess for the basis is made using the polynomials of Fig. 1. During the assembly of
matrix D, the largest number of plane waves which give the condition number of DK below the predetermined
limit is chosen. The Bi-CGstab is terminated when the relative residual is below 10�5.

Fig. 3 shows that all three condition number limits used in Fig. 1 lead to convergent Bi-CGstab iteration
when the angular frequency is x = 10p and the ABC is used. Subsequent simulations show that the condition
numbers below 105 give a sufficiently large basis dimension for accuracy in the frequency range used in this
study (to be quantified shortly). Therefore, it is used in the rest of the simulations. Hence, the number of basis
functions in each element is approximately the same as shown in the lowest graph of Fig. 1, depending on the
local wave number and size of the element. We note, however, that the actual number of basis functions can
have small variation between elements, despite the same local wave number kK and element size parameter hav

K ,
since the conditioning is also affected by the shape of the elements. And as noted earlier, the absorption in the
PML elements reduces the number of basis functions as compared to the estimates of Fig. 1 which are com-
puted for a non-absorbing medium.
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4.2.1. The effect of the PML

One objective of this study is to investigate the performance of the PML in the UWVF as a method for
eliminating spurious reflections arising from the truncation of wave problems on unbounded domains.
Fig. 4 shows the solution for the free-space dipole at the angular frequency x = 30p.

The effect of the PML decay parameter r0 on the accuracy of the UWVF approximation is investigated in
Fig. 5. Since the boundary condition on the exterior boundary of the PML is Eq. (3) with Q = 0 and g = 0, the
case r0 = 0 corresponds to the low order absorbing boundary condition referred to as ABC in this study. Sim-
ulation are computed for three different angular frequencies x = 10p, 20p and 30p. The corresponding wave-
lengths are k = 0.2,0.1 and 0.0667, so the thickness of the PML in terms of wavelengths is 0.5k,k and 3/2k.
The same figure also shows the number of Bi-CGstab iterations needed to reach the relative residual below
10�5.
Fig. 4. UWVF approximation for the free-space dipole at x = 30p. The exact solution is computed using Eq. (28). The UWVF-ABC
solution corresponds to the absorbing boundary condition (3) with Q = 0 and g = 0. The approximation with the PML is for the decay
parameter r0 = 2. The top row shows the real parts of the z-component of the electric field. The middle row shows the full amplitude of the
electric filed E. The bottom row presents the distribution of the error in the UWVF-ABC and UWVF-PML solutions. The errors for the
ABC and PML approximations are 6.69% and 2.63%, respectively.
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These results suggest that the UWVF approximation using the PML becomes unstable at low frequency
causing an increased number of iterations. This could, perhaps, be helped by taking a thicker layer. On the
other hand, there is a window of values for r0 which improve the accuracy of the UWVF-PML in comparison
to the UWVF-ABC. When the decay parameter is too large, the error increases. This is caused by the reduced
number of basis functions in the PML elements resulting from the condition number based criterion for choos-
ing the basis. More precisely, we limit the maximum condition number of blocks DK below 105. At large r0 this
criterion is met or even exceeded when the number of plane waves in the PML elements is only three.

The instability of the UWVF-PML approximation at low frequencies is seen more clearly in Fig. 6 in which
the error and the number of degrees of freedom (DOF) are plotted as a function of the frequency. The axis on
the top of the error plot shows the ratio of the maximum element size hmax and the wavelength k. The PML
leads to poorer accuracy than the ABC at the lowest frequency x = 5p after which the performance of the
PML improves. Results suggest that the use of the PML at higher frequencies has two advantages, First, it
reduces the error. Second, due to the smaller number of basis functions needed for the elements in the
PML, it also reduces the size of the problem (of course, the PML would also allow us to reduce the size of
the computational domain which would further reduce the size of the problem).

4.2.2. Field near the singularity

Since the field of the dipole has a singularity at its origin, it is important to investigate the error of the
UWVF approximations as a function of the distance from the singularity. Fig. 7 presents the error for approx-
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imating the solution using the UWVF-ABC and the UWVF-PML along the diagonal of the cubic computa-
tional domain. The error is plotted on the line from the point (�0.5, �0.5, �0.5) to (0.5,0.5,0.5). As is to be
expected, the error peaks strongly at location of the dipole where the true solution is unbounded. While the
solution with the ABC has wavy spurious reflections, the error for the PML is smoother within the compu-
tational domain. However, the PML error also increases rapidly near the corner of the actual computational
domain. This suggests that the PML still induces weak reflections back to the computational domain.

4.3. Layered media

The UWVF method can easily be used for problems in an inhomogeneous medium. Fig. 8 shows the
UWVF approximations for a dipole source above a layered medium. The upper domain z > 0 has � = 1
and in the region z < 0 � = 2. Results are shown for x = 30p. As in the case of the homogeneous medium,
the use of the PML reduces spurious reflections from the exterior boundary. This can be shown by comparing
the results for the ABC and the PML with a analytical solution of the problem which is outlined in [19]. In
Fig. 9, we plot the field jEj along the line z = �0.2 in the x = 0 plane. The wavy spurious reflection of the
ABC are almost extinguished when the PML is used. Consequently, the error is reduced from 3.4% to 0.8%.

4.4. Scattering from a sphere

The third model problem we study is the scattering of a plane wave from a perfectly conducting sphere with
radius R = 0.5. The actual region of interest is a cube with side length 0.55. This domain is surrounded by a 0.2
units thick PML. The mesh used in all simulations of this section is shown in Fig. 10. It has maximum length
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Fig. 8. The UWVF-approximations for a dipole in a layered medium when x = 30p. The PML improves the solution.
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Fig. 9. The field jEj along the line z = �0.2 in the x = 0 plane. The PML reduces the error from 3.4% to 0.8%. The exact solution for the
problem is formulated in [19].
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of an element edge hmax = 0.196. To ensure an accurate geometric representation of the surface of the sphere,
the mesh is refined near the scatterer. We compute solution at x = 30p which gives k/hmax = 0.340, i.e. approx-
imately three wavelengths per element.

The problem can be decomposed into the scattered part Esc and the incident part Ein. The incident field is a
y-direction polarized plane wave propagating in the direction of positive x-axis. The problem is formulated for
the scattered field only. In the UWVF, we set Q = 1 and g = (1/2)n · Ein (see Eq. (3)) on the surface of the
sphere. On the exterior boundary we have Q = 0, r ¼ ffiffiffiffiffi

l0

p
=
ffiffiffiffi
�0
p

and g = 0 which corresponds to the low-order
ABC. We also compute the electric far-field pattern E1 defined in spherical coordinates (r,h,/) as



Fig. 10. The mesh used in the scattering from the sphere simulations. The mesh consists of 12,176 vertices and 45,461 tetrahedra. To better
approximate the sphere, the mesh is relatively fine on near the surface of the scatterer.

Fig. 11
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Eðr; h;/Þ � E1ðh;/Þ
eix

ffiffiffiffiffiffi
l0�0
p

r

r
;

when r!1. The computation of the far-field from the UWVF approximation is presented in [4]. In all far-
field simulations of this study, the integrals for the resolving the far-field are computed over the exterior
boundary of the computational domain.

Fig. 11 shows the near-field UWVF-PML approximations with r0 = 2.0 for the scattered field Esc. The total
field Esc + Ein is shown on the right. The electric far-field pattern for the same problem is plotted in Fig. 12.
The figure shows UWVF approximations using the ABC and the PML which both compare well with the ana-
lytical Mie series solution (the PML solution is almost indistinguishable from the exact solution).

The error in the far-field and the number of degrees of freedom (DOF) as a function of the angular fre-
quency x is shown in Fig. 13. The axis on the top of the error plot shows the ratio of the maximum element
size hmax and the wavelength k.

4.5. NASA almond

The last model problem is the scattering of a plane wave from the NASA almond for which experimental
data is published in [27]. For this example we report dimensional lengths chosen to correspond to the
. The UWVF-PML approximation for the scattering problem at x = 30p. The amplitude of the scattered field is shown on the left.
right is the amplitude of the total field (giving an idea of the radius of the sphere in wavelengths).
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experimental measurements. The perfectly conducting metallic almond-shaped scatterer is 25.2 cm long. The
coordinate system is chosen so that the longest dimension of the almond is in the x-direction and the smallest
in the z-direction. The computational domain is 40 · 40 · 40 cm3 cube. The object is illuminated by plane
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waves which propagate in (x,y)-plane and are vertically polarized (i.e. the VV-polarization in [27]). Hence, the
formulation of the problem for the scattered field Esc is identical with that of the sphere in the previous section.

For each plane wave, the back-scattered radar cross section (RCS) is computed. We simulate two of the
measured frequencies. At 1.19 GHz, the wavelength is k = 25.2 cm and 9.92 GHz corresponds to k = 3.0 cm.

In Fig. 15 we compare UWVF approximation for the RCS with the simulation computed using the elec-
tromagnetics module of a commercial finite element solver called COMSOL Multiphysics 3.2 (Comsol AB,
Stockholm, Sweden) [10]. The UWVF approximations are computed on the meshes of Fig. 14. We use the
same fine UWVF mesh (with hmax = 0.072) also for the finite element method (FEM) simulations using COM-
SOL Multiphysics 3.2. In that case k/hmax = 3.5 which can be expected to be near the minimum that can be
handled by COMSOL Multiphysics due to the limitations of the underlying first order edge (vector) edge
element method. An additional FEM simulation is computed using a mesh with hmax = 4.0 cm which gives
k/hmax = 6.3 (the mesh consists of 72,559 tetrahedra and 14,306 vertices). All UWVF and FEM results are
computed using the same low-order ABC on the truncated exterior boundary (i.e. Q = 0, r ¼ ffiffiffiffiffi

l0

p
=
ffiffiffiffi
�0
p

and
g = 0 in Eq. (3)).

A comparison of the results with Woo’s experimental data (measured data is extracted every 10 degrees
from the enlarged Fig. 3 of [27]) shows that all simulations are in good agreement with the measurements.
However, despite the equal accuracy in the surface triangulation and the same statement of the problem,
the COMSOL and UWVF solutions differ slightly near the minima at 45� and 135� angles. A detailed inspec-
tion with Fig. 3 of Ref. [27] suggests that the location of the minima and the value of the RCS at the minima
are captured more accurately by the UWVF. The refinement of the mesh improved the accuracy of the FEM
approximation but further refinement was impossible due to the limited memory in our workstation (COM-
SOL Multiphysics was run on a 3.0 GHz Pentium 4 processor having 3.0 GB RAM).

It is evident that the UWVF is not very efficient for solving problems at low frequencies (such as the almond
problem at 1.19 GHz) when the detailed representation of the geometry requires the use of a mesh containing
many small elements. Despite the dense mesh near the scatterer, the UWVF basis should consists of at least
three plane waves per element which inevitably increases the overall number of degrees of freedom. In the
coarse mesh, the number of plane waves in the UWVF basis varies from 3 to 22, the corresponding DOF being
222,236. The solution required 476 MB memory.

However, a great advantage of the UWVF is that a single mesh can be used for simulations over a wide
range of frequencies by increasing the number of basis functions along with the frequency (as shown in
Fig. 1). To demonstrate this feature of the method, we solve the RCS for the almond at 9.92 GHz using
the coarser mesh of Fig. 14. The results are shown in Fig. 16. We note that even though the solution for
the coarse mesh has several wavelengths per element size (k/hmax = 0.21), the method can accurately resolve
Fig. 14. Two meshed used in the NASA almond simulations. The coarse mesh consists of 12,715 tetrahedra and 3658 vertices. The fine
mesh is constructed from 44,903 tetrahedra and 9130 vertices. Despite the large difference in the number of elements, the surface
discretization is almost equal for both meshes. The surface of the almond is represented using 5486 triangles in the dense mesh and 5278
triangles in the coarse mesh.
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the RCS. In this case, the number of basis functions varies from 4 to 130 and the number of DOF is 657,538.
The solution needed 7.73 GB memory. To verify the convergence of the solution, we also plot the same data
that is computed on the fine mesh of Fig. 14. The two solutions are almost indistinguishable between angles
55� and 180� but differ in angles below 55� when the back scattered signal is extremely weak.

Due to poor PML solutions at low frequencies, the PML could not be used for the UWVF simulations at
1.19 GHz. However, the PML is fully functional at higher frequencies and therefore we also plot the RCS
computed using PML in Fig. 16. The mesh used with the PML is relatively coarse (hmax = 14.5 cm) and it
is constructed by surrounding the 40 · 40 · 40 cm3 computational domain by a 5 cm thick PML. The mesh
consisted of 14,211 tetrahedra and 3943 vertices. The decay parameter is set to r0 = 2.0. The approximation
with the PML is again in good agreement with the two UWVF-ABC solutions but differs most in the angles
below 55�.

A comparison of UWVF approximations with the experimental data (measured data is extracted in five
degrees spacing from the enlarged Fig. 6 of Ref. [27]) shows that all simulations compare well with measure-
ments in angles larger than 55�. At smaller angles the back scattered wave weakens and the differences in the
UWVF approximations increases. It is difficult to judge which one the three simulated RCS best corresponds
to the measurements. However, the UWVF-PML simulation gives the best approximation for the RCS when
the target is illuminated from the angle zero. In addition, the location of the minima in the RCS are somewhat
correctly captured using the PML. However, the deepness of the minima differs from the measurements. The
differences in two UWVF-ABC solutions can arise from the approximation error or in small differences in the
surface representation.
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4.6. Parallel efficiency and the CPU-time

In the final part of this study, we investigate the parallel efficiency of the UWVF code. We also examine the
distribution of the CPU-time between different sub-procedures of the UWVF method and compare the overall
CPU-time with that of a commercial finite element solver.

The problem used here is scattering from the conducting sphere at x = 10p. The computation of the far-
field pattern is not included into the computation time since it is done as a post-processing step on a single
processor. In Fig. 17, we plot the CPU-time as a function of processor number when the solution is computed
using the ABC and PML. In both cases, the scalability compares well with the ideal speed-up 1/np where np is
the number of processors.

For Fig. 17, the UWVF-ABC solution is computed using the number basis functions which is obtained
directly from the estimate of Fig. 1 for the condition number 105 (i.e. the number of basis functions is not
changed during the assembly of matrix D). This approach is feasible when there is no strongly absorbing mate-
rials or the PML in the computational domain. The accuracy of the solution is almost equal when the basis is
chosen using the estimate of Fig. 1 or when the basis is chosen by constraining the condition number during
the assembly of matrix D. The errors for these two approaches are 1.33% and 1.19%, respectively. The corre-
sponding DOFs are 1,658,908 and 1,892,382. When the PML is used, the error is reduced to 0.23% but then
the basis must be selected during assembly which leads to 1,740,922 DOFs.

Fig. 18 shows how the CPU-time is distributed between different sub-procedures during the computation.
The major difference between the ABC and PML simulations is in the assembly of the matrix D. This is
because the fastest way of assembling the matrices is to use the pre-selected number of basis functions (the
figure in the middle). In the two other graphs, the number of basis functions for each element is chosen during
the assembly of D by constraining the condition number of the matrix blocks DK (see Section 4.1). The initial
number of basis functions is chosen using the estimates of Fig. 1. Since the estimate does not take into account
the effect of absorption in the PML on the number of basis functions, the initial basis must be corrected during
the assembly more for the PML than in the case of the ABC, which is seen in the longer CPU-time.

Finally, we compare the CPU-time needed by the UWVF method and a commercial finite element solver
(COMSOL Multiphysics 3.2). To be able to compute the simulation in a single processor, the frequency of the
scattering problem is lowered to x = 2p, otherwise the problem is the same as in the previous studies of this
section. Since only the ABC is readily available in COMSOL, it is also used in the UWVF simulations. In
Fig. 19 we show the UWVF and FEM approximations for the far-field pattern. The same plot also includes
the exact Mie series solution of the problem. Corresponding numbers of degrees of freedom, memory require-
ment, CPU-time and error are reported in Table 3.

To use all advanced features of COMSOL Multiphysics, the FEM solution is computed using multigrid
accelerated GMRES (generalized minimal residual) iteration which is the fastest and most memory efficient
solver available in COMSOL. The DOF shown in Table 3 is associated with the fine mesh of the multigrid
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Table 3
Comparison of the UWVF and FEM

Method DOF MEM (Gb) CPU-time (s) Error (%)

FEM 247,863 1.11 371 4.58
UWVF 35,690 0.11 212 7.54
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iteration. The coarse mesh consisted of 25,290 elements. Since the ABC is used, the pre-selected number of
basis functions for the UWVF is used (corresponding the condition number 105 in Fig. 1).

The UWVF leads to a reduced need for memory and CPU-time but, with the given meshes, results in a
slightly larger error than the FEM. The reason for the larger error is an inaccurate geometric representation
of the surface of the sphere. Since the UWVF allows the use of very coarse meshes, only 1122 elements is used
for this problem. Hence, the coarse triangulation of the surface of the sphere provides an additional approx-
imation error. The origin of this error can be verified by increasing the number of basis function in the UWVF
mesh which does not reduce the error of the approximation. The error could be decreased, for example, by
using curved elements near the surface as was done in 2D simulations in Ref. [16]. This possibility, however,
is not investigated in this study.

5. Conclusion

We have investigated the feasibility of using the ultra weak variational formulation (UWVF) to solve time-
harmonic Maxwell problems. In the first part of the paper, the UWVF was shown to be a upwind discontin-
uous Galerkin (DG) method with a special choice of basis functions. Namely, when the basis is a solution of
the local adjoint Maxwell equation.

The main goal of this study was to present a practical implementation of the UWVF method. A parallel
procedure for solving the UWVF approximations was outlined. In addition, we introduced a method for
choosing the number plane wave basis functions for the UWVF, so that the resulting matrix equation is solv-
able using standard iterative methods (we used stabilized bi-conjugate gradient iteration). The idea is to con-
strain the condition number of local (element-wise) matrix system which provides a control over the
conditioning of the whole UWVF matrix equation. We showed that in the absence of absorption, a stable
number of basis functions can be estimated for each element based on the local wave number and the element
size. Numerical examples in 3D showed the feasibility of the proposed computational method.

Potential future developments of the UWVF include:

(1) Theoretical estimates for the error and condition number for the UWVF (our method was based on the
use of experimental simulations for providing the information on the condition number and accuracy).

(2) Reduction in the number of directions in the plane wave basis by altering also the directions of the plane
waves element by element (only the number of equidistributed directions as was varied in this study).
This will require the use of information of the dominant directions of the solution.

(3) A better parametrization of surfaces or interfaces in the computational mesh to avoid the need for using
dense meshes near boundaries. This would also reduce the size of the problem by reducing the number of
elements in the mesh. For example curved elements have been used on a circular scatterer in 2D UWVF
simulation [16].

(4) To improve the accuracy of the UWVF near singularities. Despite the refinement of the mesh near sin-
gularities, the UWVF approximations failed near the point source. It may be possible to improve the
accuracy there by using singular basis functions (such as the Bessel functions) or by coupling the UWVF
with a standard polynomial based discontinuous Galerkin method which can be used near singularities.
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